Visualization and Bayesian Inference

نویسنده

  • Vince Kellen
چکیده

The apparent difficulty people have with making Bayesian inferences has been researched heavily over the past 25 years, with conflicting explanations regarding the causes of and the cures for this inadequacy. Some researchers have improved Bayesian reasoning by representing the problem visually, but usually as a tool to teach Bayesian reasoning skills. This research examines facilitating reasoning performance in naïve Bayesian subjects without attempting to teach Bayesian reasoning skills. This approach is more relevant for everyday decision support situations where subjects do not or need not possess knowledge of Bayes theorem (naïve subjects). Several different visual representations (VRs) will be examined to determine which visualization technique generates the best decision performance. For this specific problem, certain visualization representations (VRs) may reveal the problem structure better than others, improving decision making, regardless of the whether number is represented as a natural frequency or a probability. VRs should be stable with regard to different base rates and reference class sizes. Using dual processing theories of cognition, this research will explain other aspects of this judgment task, including how users create and choose their strategies in solving this task and why subjects may have low levels of confidence in their results yet exhibit high task performance. Hopefully this research will help paint a clearer picture of the best ways for decision support systems to represent information in Bayesian inference tasks to naïve subjects and how VRs can enhance naïve subject performance in a variety of judgment and decision making tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Nonparametric and Parametric Inference

This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.

متن کامل

Bayesian approach to inference of population structure

Methods of inferring the population structure‎, ‎its applications in identifying disease models as well as foresighting the physical and mental situation of human beings have been finding ever-increasing importance‎. ‎In this article‎, ‎first‎, ‎motivation and significance of studying the problem of population structure is explained‎. ‎In the next section‎, ‎the applications of inference of p...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Implementation of Traditional (S-R)-Based PM Method with Bayesian Inference

In order to perform Preventive Maintenance (PM), two approaches have evolved in the literature. The traditional approach is based on the use of statistical and reliability analysis of equipment failure. Under statistical-reliability (S-R)-based PM, the objective of achieving the minimum total cost is pursued by establishing fixed PM intervals, which are statistically optimal, at which to replac...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005